skip to main content


Search for: All records

Creators/Authors contains: "Paul, Arindam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Materials design aims to identify the material features that provide optimal properties for various engineering applications, such as aerospace, automotive, and naval. One of the important but challenging problems for materials design is to discover multiple polycrystalline microstructures with optimal properties. This paper proposes an end-to-end artificial intelligence (AI)-driven microstructure optimization framework for elastic properties of materials. In this work, the microstructure is represented by the Orientation Distribution Function (ODF) that determines the volume densities of crystallographic orientations. The framework was evaluated on two crystal systems, cubic and hexagonal, for Titanium (Ti) in Joint Automated Repository for Various Integrated Simulations (JARVIS) database and is expected to be widely applicable for materials with multiple crystal systems. The proposed framework can discover multiple polycrystalline microstructures without compromising the optimal property values and saving significant computational time. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Abstract

    There are two broad modeling paradigms in scientific applications: forward and inverse. While forward modeling estimates the observations based on known causes, inverse modeling attempts to infer the causes given the observations. Inverse problems are usually more critical as well as difficult in scientific applications as they seek to explore the causes that cannot be directly observed. Inverse problems are used extensively in various scientific fields, such as geophysics, health care and materials science. Exploring the relationships from properties to microstructures is one of the inverse problems in material science. It is challenging to solve the microstructure discovery inverse problem, because it usually needs to learn a one-to-many nonlinear mapping. Given a target property, there are multiple different microstructures that exhibit the target property, and their discovery also requires significant computing time. Further, microstructure discovery becomes even more difficult because the dimension of properties (input) is much lower than that of microstructures (output). In this work, we propose a framework consisting of generative adversarial networks and mixture density networks for inverse modeling of structure–property linkages in materials, i.e., microstructure discovery for a given property. The results demonstrate that compared to baseline methods, the proposed framework can overcome the above-mentioned challenges and discover multiple promising solutions in an efficient manner.

     
    more » « less